Cholinergic innervation of the human cerebellum
- PMID: 8440786
- DOI: 10.1002/cne.903280304
Cholinergic innervation of the human cerebellum
Abstract
Cholinergic innervation of the human cerebellum was investigated immunocytochemically by using a polyclonal rabbit antiserum against choline acetyltransferase. Immunoreactive structures were found throughout the cerebellar cortex but were localized predominantly in the vermis, flocculus, and tonsilla. These included 1) a population of Golgi cells in the granular layer; 2) a subpopulation of mossy fibers and glomerular rosettes; 3) thin, varicose fibers closely associated with the Purkinje cell layer and the molecular layer; and 4) a relatively dense network of fibers and terminals contributing to the glomerular formations in the granular layer. In the cerebellar nuclei, some cells stained positively for choline acetyltransferase, and a terminal field pattern could be detected with a distinct but sparse network of varicose fibers. Acetylcholine appears to be a primary transmitter in the vestibulocerebellar pathways at several levels, which may account for the potent effects of muscarinic antagonists in diminishing vestibular vertigo in humans.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
