Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Mar;13(3):1920-32.
doi: 10.1128/mcb.13.3.1920-1932.1993.

Evidence that GCD6 and GCD7, translational regulators of GCN4, are subunits of the guanine nucleotide exchange factor for eIF-2 in Saccharomyces cerevisiae

Affiliations

Evidence that GCD6 and GCD7, translational regulators of GCN4, are subunits of the guanine nucleotide exchange factor for eIF-2 in Saccharomyces cerevisiae

J L Bushman et al. Mol Cell Biol. 1993 Mar.

Abstract

Starvation of the yeast Saccharomyces cerevisiae for an amino acid signals increased translation of GCN4, a transcriptional activator of amino acid biosynthetic genes. We have isolated and characterized the GCD6 and GCD7 genes and shown that their products are required to repress GCN4 translation under nonstarvation conditions. We find that both GCD6 and GCD7 show sequence similarities to components of a high-molecular-weight complex (the GCD complex) that appears to be the yeast equivalent of translation initiation factor 2B (eIF-2B), which catalyzes GDP-GTP exchange on eIF-2. Furthermore, we show that GCD6 is 30% identical to the largest subunit of eIF-2B isolated from rabbit reticulocytes. Deletion of either GCD6 or GCD7 is lethal, and nonlethal mutations in these genes increase GCN4 translation in the same fashion described for defects in known subunits of eIF-2 or the GCD complex; derepression of GCN4 is dependent on short open reading frames in the GCN4 mRNA leader and occurs independently of eIF-2 alpha phosphorylation by protein kinase GCN2, which is normally required to stimulate GCN4 translation. Together, our results provide evidence that GCD6 and GCD7 are subunits of eIF-2B in S. cerevisiae and further implicate this GDP-GTP exchange factor in gene-specific translational control.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Mol Cell Biol. 1988 Nov;8(11):4808-20 - PubMed
    1. Mol Cell Biol. 1991 Jun;11(6):3203-16 - PubMed
    1. Mol Cell Biol. 1991 May;11(5):2629-40 - PubMed
    1. Proc Natl Acad Sci U S A. 1988 Jan;85(1):51-4 - PubMed
    1. J Biol Chem. 1988 Apr 25;263(12):5526-33 - PubMed

Publication types

MeSH terms

Associated data