Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Apr;72(4):890-900.
doi: 10.1161/01.res.72.4.890.

Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes

Affiliations
Free article
Comparative Study

Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes

P H Backx et al. Circ Res. 1993 Apr.
Free article

Abstract

Background outward K+ currents in guinea pig ventricular myocytes were characterized over a broad range of membrane potentials, including those corresponding to the plateau of the action potential. The background current that is blocked by 1 mM Ba2+ (IK,p) activates within 5 msec at positive potentials, does not inactivate, and deactivates very rapidly on repolarization. IK,p is insensitive to Cl- channel blockers, internal or external [Cl-], dihydropyridines, and sulfonylureas. In contrast, the delayed rectifier K+ current (IK) was not completely blocked even by 30 mM Ba2+. Ba(2+)-sensitive current density increased progressively from 0.16 +/- 0.04 pA/pF at 0 mV to 0.52 +/- 0.21 pA/pF at +80 mV (n = 13, mean +/- SEM). The background current remains present when [K+]o is reduced to 0 mM, which suppresses the inward rectifier K+ current (IK1). These and other features suggest that IK,p is generated by K+ channels that are distinct from IK1 or IK. The kinetics and voltage dependence of IK,p render it capable of modulating both the height and duration of the cardiac action potential.

PubMed Disclaimer

Publication types

LinkOut - more resources