Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb 15;212(1):101-5.
doi: 10.1111/j.1432-1033.1993.tb17638.x.

The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal

Affiliations
Free article

The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal

S A Phillips et al. Eur J Biochem. .
Free article

Abstract

In Krebs-Ringer phosphate buffer, the rate of formation of methylglyoxal from glycerone phosphate and glyceraldehyde 3-phosphate was first order with respect to the triose phosphate with rates constant values of 1.94 +/- 0.02 x 10(-5) s-1 (n = 18) and 1.54 +/- 0.02 x 10(-4) s-1 (n = 18) at 37 degrees C, respectively. The rate of formation of methylglyoxal from glycerone phosphate and glyceraldehyde 3-phosphate in the presence of red blood cell lysate was not significantly different from the non-enzymatic value (P > 0.05). Methylglyoxal formation from glycerone phosphate was increased in the presence of triose phosphate isomerase but this may be due to the faster non-enzymatic formation from the glyceraldehyde 3-phosphate isomerisation product. For red blood cells in vitro, the predicted non-enzymatic rate of formation of methylglyoxal from glycerone phosphate and glyceraldehyde 3-phosphate may account for the metabolic flux through the glyoxalase system. The reactivity of glycerone phosphate and glyceraldehyde 3-phosphate towards the non-enzymatic formation of methylglyoxal under physiological conditions suggests that methylglyoxal formation is unavoidable from the Embden-Meyerhof pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources