Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1993 Jan;74(1):230-7.
doi: 10.1152/jappl.1993.74.1.230.

Effects of acute and chronic acetazolamide on resting ventilation and ventilatory responses in men

Affiliations
Clinical Trial

Effects of acute and chronic acetazolamide on resting ventilation and ventilatory responses in men

E R Swenson et al. J Appl Physiol (1985). 1993 Jan.

Abstract

The effects of acetazolamide (ACTZ) on ventilatory control are thought to be mediated by metabolic acidosis. However, carbonic anhydrase (CA) inhibition within brain and chemoreceptors and tissue respiratory acidosis may also be important. We compared the acute effects of ACTZ (tissue respiratory acidosis and tissue CA inhibition without metabolic acidosis) on ventilation and ventilatory control with chronic ACTZ (acute effects plus metabolic acidosis). Five men were studied 1 h after 500 mg iv ACTZ or 0.9% saline (acute effects) and also after three doses of ACTZ (500 mg po every 6 h; chronic effects). Minute ventilation (VE), steady-state hypercapnic ventilatory response (HCVR), and hypoxic ventilatory response (HVR) were measured with respiratory inductance plethysmography. Resting VE was increased equally by acute and chronic ACTZ. HCVR increased with chronic ACTZ in hyperoxia and even further in hypoxia. In contrast, acute ACTZ had no effect on the HCVR slope in hyperoxia and suppressed its augmentation by hypoxia. HVR was fully suppressed by acute ACTZ but unchanged with chronic ACTZ. ACTZ also slowed the rate of full ventilatory response to CO2. These findings show that CA inhibitors affect ventilatory control in a complex fashion, not only through changes in systemic acid-base balance but also by central and peripheral chemoreceptor inhibition.

PubMed Disclaimer

Publication types

LinkOut - more resources