Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Mar 5;268(7):5264-71.

Identification of metal-isocitrate binding site of pig heart NADP-specific isocitrate dehydrogenase by affinity cleavage of the enzyme by Fe(2+)-isocitrate

Affiliations
  • PMID: 8444900
Free article

Identification of metal-isocitrate binding site of pig heart NADP-specific isocitrate dehydrogenase by affinity cleavage of the enzyme by Fe(2+)-isocitrate

S Soundar et al. J Biol Chem. .
Free article

Abstract

The divalent metal-isocitrate site of pig heart NADP-specific isocitrate dehydrogenase can be located by affinity cleavage of the enzyme by Fe(2+)-isocitrate in the presence of O2, in analogy to the "chemical nuclease" action of DNA-binding drugs linked to Fe-EDTA. The enzyme is irreversibly inactivated and cleaved by Fe(2+)-isocitrate more rapidly than by Fe2+. Mn2+ prevents inactivation and cleavage by Fe(2+)-isocitrate or by Fe2+. Furthermore, other tri- or dicarboxylates (such as citrate, tricarballylate, or malate), which are not effective substrates of the enzyme, fail to promote inactivation and cleavage of the enzyme by Fe2+. These results indicate that the oxidative inactivation and cleavage reactions are specific. Two pairs of major peptides are generated during Fe(2+)-isocitrate inactivation: 30 + 17 kDa and 35 + 11 kDa, as compared with 46 kDa for the intact enzyme. NH2-terminal sequencing revealed that these peptides arise by a mutually exclusive cleavage at either Asp253-Met254 or His309-Gly310, suggesting Asp253 and His309 as coordination sites for Fe(2+)-isocitrate and, by implication, for Mn(2+)-isocitrate. Fe2+ alone produces peptides (32 + 15 kDa) by an alternate specific cleavage between Tyr272 and Asp273, consistent with free metal ion occupying a different site from metal-isocitrate in NADP-dependent isocitrate dehydrogenase. Affinity cleavage may be a generally useful method for locating metal and metal-substrate sites in enzymes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources