Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Mar;7(3):452-7.

Increased expression of GATA-1 and NFE-2 erythroid-specific transcription factors during aclacinomycin-mediated differentiation of human erythroleukemic cells

Affiliations
  • PMID: 8445949
Comparative Study

Increased expression of GATA-1 and NFE-2 erythroid-specific transcription factors during aclacinomycin-mediated differentiation of human erythroleukemic cells

C Trentesaux et al. Leukemia. 1993 Mar.

Abstract

Anthracycline antitumor drugs, particularly aclacinomycin (ACM) have been shown to be potent inducers of erythroid differentiation in human leukemic K562 cells. Here we report that such an event is associated with an overexpression of the erythroid-specific transcription factors GATA-1 and NFE-2. Using the electrophoretic mobility shift assay, during differentiation over 3 days of culture, we have observed an increase in the binding either of GATA-1 to the promoter of the gamma-globin gene (region -201 to -156) or NFE-2 to the promotor of the porphobilinogen deaminase gene (region -170 to -142). Both events were paralleled by a recruitment of hemoglobinized cells and a stimulation of heme synthesis. Enhanced binding capacity of GATA-1 was confirmed by an increase in its mRNAs. Moreover, GATA-1 and NFE-2 overexpression has been shown to be specific of the differentiating effect of the drug and not of its growth inhibitory effect. In contrast, no change was observed in the binding of the ubiquitous factors OTF-1 and AP-1, except on day 3, where AP-1 decreased. Although ACM is a DNA-intercalating agent, it did not directly affect transcription factors binding to their cis-sequences as assessed by the preincubation of the oligonucleotides probes with increasing concentrations of ACM. Taken together, these results strongly suggest that ACM could exert their erythroid-differentiating activity by modulating the expression of transcription factors which specifically regulate the transcription of erythroid genes.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms