Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb;264(2 Pt 1):G294-9.
doi: 10.1152/ajpgi.1993.264.2.G294.

Role of carboxyl and sulfhydryl residues on rabbit small intestinal brush-border membrane Na(+)-glucose cotransporter

Affiliations

Role of carboxyl and sulfhydryl residues on rabbit small intestinal brush-border membrane Na(+)-glucose cotransporter

B E Peerce et al. Am J Physiol. 1993 Feb.

Abstract

The role of sulfhydryl (SH) and carboxylic acid residues in Na(+)-dependent glucose uptake, Na(+)-dependent phlorizin binding, and substrate exchange by the rabbit small intestinal brush-border membrane (BBM) Na(+)-glucose cotransporter was examined in sodium dodecyl sulfate-BBM vesicles. The sulfhydryl reagent p-chloromercuribenzoate (PCMB) inhibited all three measures of cotransporter function in a dithiothreitol-sensitive manner with similar K0.5 values (concn of PCMB resulting in 50% inhibition). PCMB sulfonate had no effect on Na(+)-glucose cotransporter function < 250 microM. The carboxylic acid reagent 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide no effect on Na(+)-glucose cotransporter function. N,N'-dicyclohexylcarbodiimide (DCCD) inhibited all three measures of cotransporter function with similar K0.5 values for inhibition. Inhibition by DCCD did not require addition of a nucleophile. In contrast, PCMB-pretreated cotransporter was insensitive to DCCD in the absence of added nucleophile with respect to substrate transport (Na(+)-dependent glucose uptake) but not Na(+)-dependent phlorizin binding. These results indicate an intravesicular or lipophilic environment for both the PCMB-reactive SH residue and the DCCD-reactive carboxylic acid residues, suggesting that a SH residue may act as an endogenous nucleophile for interaction of DCCD with the Na(+)-glucose cotransporter and suggesting that different carboxylic acid residues may be involved in Na(+)-dependent glucose uptake and Na(+)-dependent phlorizin binding.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources