On periodic solutions of a delay integral equation modelling epidemics
- PMID: 845513
- DOI: 10.1007/BF00276353
On periodic solutions of a delay integral equation modelling epidemics
Abstract
A delay-integral equation, proposed by Cooke and Kaplan in [1] as a model of epidemics, is studied. The focus of this work is on the qualitative behavor of solutions as a certain parameter is allowed to vary. It is shown that if a certain threshold is not exceeded then solutions tend to zero exponentially while if this threshold is exceeded, periodic solutions exist. Many features or the numerical studies in [1] are explained.
Similar articles
-
Periodic solutions: a robust numerical method for an S-I-R model of epidemics.J Math Biol. 1999 Dec;39(6):471-92. doi: 10.1007/s002850050175. J Math Biol. 1999. PMID: 10672508
-
Threshold dynamics of a periodic SIR model with delay in an infected compartment.Math Biosci Eng. 2015 Jun;12(3):555-64. doi: 10.3934/mbe.2015.12.555. Math Biosci Eng. 2015. PMID: 25811548
-
The effect of integral conditions in certain equations modelling epidemics and population growth.J Math Biol. 1980 Aug;10(1):13-32. doi: 10.1007/BF00276393. J Math Biol. 1980. PMID: 7205075
-
Small amplitude, long period outbreaks in seasonally driven epidemics.J Math Biol. 1992;30(5):473-91. doi: 10.1007/BF00160532. J Math Biol. 1992. PMID: 1578191
-
Seasonality and period-doubling bifurcations in an epidemic model.J Theor Biol. 1984 Oct 21;110(4):665-79. doi: 10.1016/s0022-5193(84)80150-2. J Theor Biol. 1984. PMID: 6521486
Cited by
-
Refractory period in network models of excitable nodes: self-sustaining stable dynamics, extended scaling region and oscillatory behavior.Sci Rep. 2017 Aug 2;7(1):7107. doi: 10.1038/s41598-017-07135-6. Sci Rep. 2017. PMID: 28769096 Free PMC article.
-
Persistence in seasonally forced epidemiological models.J Math Biol. 2012 May;64(6):933-49. doi: 10.1007/s00285-011-0440-6. Epub 2011 Jun 8. J Math Biol. 2012. PMID: 21656007
-
Global asymptotic stability of a periodic solution to an epidemic model.J Math Biol. 1982;15(3):319-38. doi: 10.1007/BF00275691. J Math Biol. 1982. PMID: 7153676
-
Resonance of the epidemic threshold in a periodic environment.J Math Biol. 2008 Nov;57(5):649-73. doi: 10.1007/s00285-008-0183-1. Epub 2008 May 7. J Math Biol. 2008. PMID: 18461330