Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Apr;107(4):656-65.
doi: 10.1093/jn/107.4.656.

Protection against carbon tetrachloride-induced lipid peroxidation in the rat by dietary vitamin E, selenium, and methionine as measured by ethane evolution

Protection against carbon tetrachloride-induced lipid peroxidation in the rat by dietary vitamin E, selenium, and methionine as measured by ethane evolution

D G Hafeman et al. J Nutr. 1977 Apr.

Abstract

Dietary vitamin E, selenium (Se), and methionine were tested for their ability to inhibit carbon tetrachloride (CCL4)-induced lipid peroxidation. Peroxidation, in vivo, was monitored by the evolution of ethane, an autoxidation product of omega-3-unsaturated fatty acids. Weanling rats were fed a basal diet low in vitamin E, Se, and sulfur-containing amino acids, or diets individually supplemented with these factors. After 3 to 7 weeks, the rats were injected with CCL4 (ip) and ethane was collected for 9 hours. Cumulative ethane evolution was increased by CCl4 in all groups. Vitamin E, Se, and methionine reduced ethane evolution from CCl4-treated rats by 82%, 74%, and 60%, respectively. The toxicity of CCl4 was decreased in correlation with ethane evolution. Thus, methionine and Se, probably by maintaining intracellular glutathione and glutathione peroxidase, protected against CCl4-induced lipid peroxidation, as did vitamin E. Substitution of cod liver oil, which is rich in omega-3-unsaturated fat, for lard in the basal diet increased CCl4-induced ethane evolution six-fold. Relative inhibition by the dietary supplements was not changed. Thus, the feeding of cod liver oil greatly increased ethane production which facilitated the detection and measurement of lipid peroxidation in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources