Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993;30(3-4):381-6.
doi: 10.1016/0361-9230(93)90269-h.

Altered metabolism of excitatory amino acids, N-acetyl-aspartate and N-acetyl-aspartyl-glutamate in amyotrophic lateral sclerosis

Affiliations

Altered metabolism of excitatory amino acids, N-acetyl-aspartate and N-acetyl-aspartyl-glutamate in amyotrophic lateral sclerosis

A Plaitakis et al. Brain Res Bull. 1993.

Abstract

Since recent studies provided evidence for abnormal glutamate metabolism in amyotrophic lateral sclerosis, we measured amino acid levels in the fasting plasma of 52 ALS patients and an equal number of controls of a similar age. In addition, the content of amino acids, N-acetyl-aspartate (NAA) and N-acetyl-aspartyl-glutamate (NAAG) were measured in spinal cord and brain tissue obtained at autopsy from patients dying of ALS. Results showed significant elevations (by about 70%) in the plasma levels of glutamate in the ALS patients as compared to controls. In contrast, glutamate levels were significantly decreased in all CNS regions studied of ALS patients (by 21-40%), with the greatest changes occurring in the spinal cord. The ratio of glutamine to glutamate was altered significantly in the spinal cord ALS tissue. In addition, reductions in the levels of aspartate (by 32-35%), NAA, and NAAG (by 40-48%) were found in the spinal cord of ALS patients. These results are consistent with a generalized defect in the metabolism of neuroexcitotoxic amino acids. An altered distribution of these compounds may occur between their intracellular and extracellular pools with resultant abnormal potentiation of excitatory transmission mediated by glutamate receptors and selective degeneration of motor neurons.

PubMed Disclaimer

Publication types

LinkOut - more resources