A signal sequence is not required for protein export in prlA mutants of Escherichia coli
- PMID: 8458344
- PMCID: PMC413286
- DOI: 10.1002/j.1460-2075.1993.tb05728.x
A signal sequence is not required for protein export in prlA mutants of Escherichia coli
Abstract
The prlA/secY gene, which codes for an integral membrane protein component of the Escherichia coli protein export machinery, is the locus of the strongest suppressors of signal sequence mutations. We demonstrate that two exported proteins of E.coli, maltose-binding protein and alkaline phosphatase, each lacking its entire signal sequence, are exported to the periplasm in several prlA mutants. The export efficiency can be substantial; in a strain carrying the prlA4 allele, 30% of signal-sequenceless alkaline phosphatase is exported to the periplasm. Other components of the E.coli export machinery, including SecA, are required for this export. SecB is required for the export of signal-sequenceless alkaline phosphatase even though the normal export of alkaline phosphatase does not require this chaperonin. Our findings indicate that signal sequences confer speed and efficiency upon the export process, but that they are not always essential for export. Entry into the export pathway may involve components that so overlap in function that the absence of a signal sequence can be compensated for, or there may exist one or more means of entry that do not require signal sequences at all.
Similar articles
-
prlA suppression of defective export of maltose-binding protein in secB mutants of Escherichia coli.J Bacteriol. 1993 Jul;175(13):4036-44. doi: 10.1128/jb.175.13.4036-4044.1993. J Bacteriol. 1993. PMID: 8320219 Free PMC article.
-
Export of maltose-binding protein species with altered charge distribution surrounding the signal peptide hydrophobic core in Escherichia coli cells harboring prl suppressor mutations.J Bacteriol. 1992 Jan;174(1):92-101. doi: 10.1128/jb.174.1.92-101.1992. J Bacteriol. 1992. PMID: 1729228 Free PMC article.
-
A new genetic selection identifies essential residues in SecG, a component of the Escherichia coli protein export machinery.EMBO J. 1995 Sep 15;14(18):4412-21. doi: 10.1002/j.1460-2075.1995.tb00120.x. EMBO J. 1995. PMID: 7556084 Free PMC article.
-
Export of the periplasmic maltose-binding protein of Escherichia coli.J Bioenerg Biomembr. 1990 Jun;22(3):401-39. doi: 10.1007/BF00763175. J Bioenerg Biomembr. 1990. PMID: 2202725 Review.
-
The genetics of protein targeting in Escherichia coli K12.J Cell Sci Suppl. 1989;11:13-28. doi: 10.1242/jcs.1989.supplement_11.2. J Cell Sci Suppl. 1989. PMID: 2693457 Review.
Cited by
-
Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA.Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9895-9. doi: 10.1073/pnas.92.21.9895. Proc Natl Acad Sci U S A. 1995. PMID: 7568240 Free PMC article.
-
The bacterial Sec-translocase: structure and mechanism.Philos Trans R Soc Lond B Biol Sci. 2012 Apr 19;367(1592):1016-28. doi: 10.1098/rstb.2011.0201. Philos Trans R Soc Lond B Biol Sci. 2012. PMID: 22411975 Free PMC article. Review.
-
Computational prediction of secreted proteins in gram-negative bacteria.Comput Struct Biotechnol J. 2021 Mar 22;19:1806-1828. doi: 10.1016/j.csbj.2021.03.019. eCollection 2021. Comput Struct Biotechnol J. 2021. PMID: 33897982 Free PMC article. Review.
-
Folding and trimerization of signal sequence-less mature TolC in the cytoplasm of Escherichia coli.Microbiology (Reading). 2009 Jun;155(Pt 6):1847-1857. doi: 10.1099/mic.0.027219-0. Epub 2009 Apr 21. Microbiology (Reading). 2009. PMID: 19383696 Free PMC article.
-
Genetic analysis of prokaryotic and eukaryotic DNA-binding proteins in Escherichia coli.Nucleic Acids Res. 1998 Aug 15;26(16):3700-6. doi: 10.1093/nar/26.16.3700. Nucleic Acids Res. 1998. PMID: 9685485 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases