Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr;7(4):592-604.
doi: 10.1101/gad.7.4.592.

Transcriptional silencing in yeast is associated with reduced nucleosome acetylation

Affiliations
Free article

Transcriptional silencing in yeast is associated with reduced nucleosome acetylation

M Braunstein et al. Genes Dev. 1993 Apr.
Free article

Abstract

Two classes of sequences in the yeast Saccharomyces cerevisiae are subject to transcriptional silencing: the silent mating-type cassettes and telomeres. In this report we demonstrate that the silencing of these regions is strictly associated with acetylation of the epsilon-amino groups of lysines in the amino-terminal domains of three of the four core histones. Both the silent mating-type cassettes and the Y domains of telomeres are packaged in nucleosomes in vivo that are hypoacetylated relative to those packaging active genes. This difference in acetylation is eliminated by genetic inactivation of silencing: The silent cassettes from sir2, sir3, or sir4 cells show the same level of acetylation as other active genes. The correspondence of silencing and hypoacetylation of the mating-type cassettes is observed even for an allele lacking a promoter, indicating that silencing per se, rather than the absence of transcription, is correlated with hypoacetylation. Finally, overexpression of Sir2p, a protein required for transcriptional silencing in yeast, yields substantial histone deacetylation in vivo. These studies fortify the hypothesis that silencing in yeast results from heterochromatin formation and argue that the silencing proteins participate in this formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources