Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb;74(2):617-26.
doi: 10.1152/jappl.1993.74.2.617.

Influence of respiration on heart rate and blood pressure fluctuations

Affiliations

Influence of respiration on heart rate and blood pressure fluctuations

V Novak et al. J Appl Physiol (1985). 1993 Feb.

Abstract

The dynamics of the respiratory and cardiovascular systems were studied by continuously slowing respiration from 0.46 to 0.05 Hz. The time-frequency distribution and global spectral analysis were used to assess the R-R interval (R-R) and the systolic and diastolic blood pressure fluctuations in 16 healthy subjects. During rest, the nonrespiratory-to-respiratory frequency ratios were not affected by occasional slow breathing, whereas the low- (0.01-0.15 Hz) to high- (0.15-0.3 Hz) frequency indexes for blood pressure were increased (P < 0.05). The respiratory fluctuations in R-R and the systolic and diastolic pressures were paced over the 0.46- to 0.05-Hz range. As respiration slowed to 0.07-0.09 Hz, the frequency content of the respiration and cardiovascular variables increased sharply and nonlinearly to a maximum that exceeded values at higher frequencies (P < 0.001). The nonrespiratory frequency content remained stable in the 0.01- to 0.05-Hz range and did not significantly differ from that at rest. In contrast, the nonstable 0.05- to 0.1-Hz component was suppressed. A slow 0.012- to 0.017-Hz rhythm modulated respiration and hemodynamic fluctuations at both respiratory and nonrespiratory frequencies. The study indicated that respiration input should be considered in the interpretation of global spectra. Furthermore the time-frequency distributions demonstrated that a close nonlinear coupling exists between the respiratory and cardiovascular systems.

PubMed Disclaimer

LinkOut - more resources