Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993;11(2):198-211.
doi: 10.3109/07357909309024840.

Modulation of cytotoxicity and differentiation-inducing potential of arabinofuranosylcytosine in myeloid leukemia cells by hematopoietic cytokines

Affiliations
Review

Modulation of cytotoxicity and differentiation-inducing potential of arabinofuranosylcytosine in myeloid leukemia cells by hematopoietic cytokines

M A Brach et al. Cancer Invest. 1993.

Erratum in

  • Cancer Invest 1998;16(3):212
  • Cancer Invest 1998;16(6):429

Abstract

Hematopoietic growth factors may be useful in improving the clinical effectiveness of arabinofuranosylcytosine (ara-C). In vitro studies have indicated that interleukin 3(IL-3) and, to a lesser extent, granulocyte-macrophage colony-stimulating factor (GM-CSF), but not G-CSF or M-CSF, may be capable of specifically augmenting the ability of ara-C to kill leukemic myeloid cells by pharmacological and cytokinetic mechanisms including increase of intracellular ara-CTP/dCTP pool ratios and enhanced ara-C DNA incorporation in leukemic blast cells, decrease of IC 90 of ara-C for leukemic colony-forming cells (CFC) as compared with normal CFC growth, and recruitment of quiescent leukemic cells into the cell cycle. In contrast, the combination of ara-C with M-CSF or with the leukemia inhibitory factor (LIF) appears to be useful in overcoming the block in differentiation of leukemic blast, while the effects of GM-CSF and IL-3 on ara-C-induced differentiation appear limited. The combined treatment of human myeloid leukemia cells by ara-C and LIF is associated with down-regulation of c-myc gene expression, transcriptional activation of jun/fos gene expression, and features of functional differentiation (e.g., the capability to reduce nitroblue tetrazolium, to express lysozyme, or to display differentiation-related surface receptors including C3bi and the c-fms protein). On the basis of these in vitro studies first clinical trials are underway that are examining the efficacy of ara-C combinations with these molecules for the treatment of myeloid disorders.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources