Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr 5;268(10):6945-52.

Spontaneous Ca2+ spiking in a vascular smooth muscle cell line is independent of the release of intracellular Ca2+ stores

Affiliations
  • PMID: 8463226
Free article

Spontaneous Ca2+ spiking in a vascular smooth muscle cell line is independent of the release of intracellular Ca2+ stores

K L Byron et al. J Biol Chem. .
Free article

Abstract

Monolayers of fura-2-loaded A7r5 cells, a cell line derived from rat embryonic aorta, generated spontaneous Ca2+ spikes that were synchronized within the cell population. These Ca2+ spikes were abolished by removal of extracellular Ca2+ or addition of nimodipine (50 nM), and their frequency was increased by depolarization with high K+ or by treatment with BAYK 8644 (1 microM), indicating that Ca2+ entry through L-type Ca2+ channels is required for Ca2+ spiking. Several lines of evidence indicate that mobilization of intracellular Ca2+ stores is not necessary for this Ca2+ spiking. 1) Ryanodine (0.1-50 microM) neither stimulated Ca2+ mobilization nor affected Ca2+ spiking; 2) the complex effects of caffeine were mimicked by theophylline, 8-bromo-cyclic adenosine 3':5'-monophosphate (8-bromo-cAMP), and forskolin, suggesting that the caffeine effects may be mediated by cAMP and not by ryanodine receptors; 3) prolonged incubation with thapsigargin (50 nM), which depletes intracellular Ca2+ stores, did not affect the frequency of Ca2+ spiking; 4) Ba2+ or Sr2+ could substitute for Ca2+ in the spike-generating mechanism even when intracellular stores were depleted of Ca2+. Under conditions where the sarcoplasmic reticulum (SR) contained Ca2+, Ba2+ spikes did not cause Ca2+ mobilization. The mechanisms involved in generating spontaneous Ca2+ spiking in A7r5 cells are therefore likely to reside in the sarcolemma and to operate independently of SR Ca2+ uptake and release.

PubMed Disclaimer

Publication types

LinkOut - more resources