Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr 15;268(11):7713-20.

Mechanism of agonist-induced [Ca2+]i oscillations in pituitary gonadotrophs

Affiliations
  • PMID: 8463300
Free article

Mechanism of agonist-induced [Ca2+]i oscillations in pituitary gonadotrophs

S S Stojilković et al. J Biol Chem. .
Free article

Abstract

Gonadotropin-releasing hormone (GnRH) activates oscillatory Ca2+ signaling in pituitary gonadotrophs at a frequency (up to 25 min-1) that is dose-dependent and is determined by the degree of receptor-mediated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) formation. Similar dose-dependent and frequency-modulated Ca2+ oscillations were elicited by intracellular administration of Ins(1,4,5)P3 and its nonhydrolyzable analogs, consistent with models in which Ins(1,4,5)P3 levels determine the frequency of Ca2+ oscillations but do not fluctuate in synchrony with [Ca2+]i. At constant agonist concentrations, Ca2+ spiking varied in amplitude, with a number of progressively larger transients before the onset of maximal oscillations, followed by a gradual decrease in spike amplitude that was accompanied by an increase in spiking frequency. The decline in the amplitude and increase in frequency of Ca2+ transients during stimulation by GnRH were not related to a decrease in the propagation of the Ca2+ signal within the cell but were associated with gradual depletion of the agonist-sensitive Ca2+ pool. Once initiated, the pattern of Ca2+ spiking was not altered by blockade of receptor occupancy, by inhibition of phospholipase C, or by reduction of extracellular [Ca2+]. Also, the endoplasmic reticulum (Ca2+)-ATPase blocker, thapsigargin, could substitute for Ins(1,4,5)P3 in initiating the oscillatory Ca2+ response. These findings indicate that although the Ins(1,4,5)P3 concentration determines the pattern of transients at the initiation of the oscillatory Ca2+ signal, maintenance of the signal does not require a sustained rise in Ins(1,4,5)P3. Since the frequency of Ca2+ oscillations is also influenced by depletion of luminal [Ca2+], it is possible that the Ins(1,4,5)P3-sensitive channels in the endoplasmic reticulum are tonically inhibited by high intraluminal Ca2+ levels and that Ins(1,4,5)P3 surmounts such inhibition by promoting Ca2+ discharge. When a critical level of Ca2+ discharge is attained, repetitive Ca2+ transients are generated by an autocatalytic mechanism in which a sustained rise in Ins(1,4,5)P3 is not an essential requirement.

PubMed Disclaimer

MeSH terms

LinkOut - more resources