Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Mar 20;230(2):543-74.
doi: 10.1006/jmbi.1993.1170.

Backbone-dependent rotamer library for proteins. Application to side-chain prediction

Affiliations
Comparative Study

Backbone-dependent rotamer library for proteins. Application to side-chain prediction

R L Dunbrack Jr et al. J Mol Biol. .

Abstract

A backbone-dependent rotamer library for amino acid side-chains is developed and used for constructing protein side-chain conformations from the main-chain co-ordinates. The rotamer library is obtained from 132 protein chains in the Brookhaven Protein Database. A grid of 20 degrees by 20 degrees blocks for the main-chain angles phi, psi is used in the rotamer library. Significant correlations are found between side-chain dihedral angle probabilities and backbone phi, psi values. These probabilities are used to place the side-chains on the known backbone in test applications for six proteins for which high-resolution crystal structures are available. A minimization scheme is used to reorient side-chains that conflict with the backbone or other side-chains after the initial placement. The initial placement yields 59% of both chi 1 and chi 2 values in the correct position (to within 40 degrees) for thermolysin to 81% for crambin. After refinement the values range from 61% (lysozyme) to 89% (crambin). It is evident from the results that a single protein does not adequately test a prediction scheme. The computation time required by the method scales linearly with the number of side-chains. An initial prediction from the library takes only a few seconds of computer time, while the iterative refinement takes on the order of hours. The method is automated and can easily be applied to aid experimental side-chain determinations and homology modeling. The high degree of correlation between backbone and side-chain conformations may introduce a simplification in the protein folding process by reducing the available conformational space.

PubMed Disclaimer

Publication types

LinkOut - more resources