Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr;235(4):501-10.
doi: 10.1002/ar.1092350403.

Distribution of dystrophin and neurofilament protein in muscle spindles of normal and Mdx-dystrophic mice: an immunocytochemical study

Affiliations

Distribution of dystrophin and neurofilament protein in muscle spindles of normal and Mdx-dystrophic mice: an immunocytochemical study

P C Nahirney et al. Anat Rec. 1993 Apr.

Abstract

Dystrophin is a high molecular weight protein localized under the sarcolemma of normal extrafusal muscle fibers but absent in skeletal muscle of Duchenne muscular dystrophy patients and mdx mice. Muscle spindles in the soleus of 32-week-old normal and age-matched mdx mice were examined by immunocytochemical methods to determine the localization of dystrophin in polar and equatorial regions of the intrafusal fibers. Spindles were serially sectioned in transverse and longitudinal planes, and were double-labelled with an antibody to dystrophin and with an antibody to a 200 kD neurofilament protein, which revealed their sensory innervation. By fluorescence microscopy, intrafusal fibers in the soleus of mdx mice were deficient in dystrophin throughout their lengths, whereas their sensory nerve terminals stained intensely with the nerve-specific antibody and appeared unaltered in dystrophy. In the normal soleus, intrafusal fibers displayed a regional variability in the distribution of dystrophin. Polar regions of bag and chain fibers exhibited a peripheral rim of sarcolemmal staining equivalent to that seen in the neighboring extrafusal fibers. Dystrophin labelling in equatorial regions of normal intrafusal fibers, however, showed dystrophin-deficient segments alternating in a spiral fashion with positive-staining domains along the sarcolemma. Double-labelling for dystrophin and neurofilament protein showed that these dystrophin-deficient sites were subjacent to the annulospiral sensory nerve wrappings terminating on the intrafusal fibers. These findings suggest that dystrophin is not an integral part of the subsynaptic sensory membrane in equatorial regions of normal intrafusal fibers and thus is not directly related to sensory signal transduction. The complete absence of this protein in mdx intrafusal fibers indicates that these fibers exhibit the same primary defect in muscular dystrophy as seen in the extrafusal fibers. However, because of their small diameters, capsular investment, and relatively low tension outputs, dystrophic intrafusal fibers may be less prone to the sarcolemmal membrane disruption that is characteristic of extrafusal fibers in this disorder.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources