Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993 Jan-Feb;13(1):83-100.
doi: 10.3109/15513819309048196.

Contemporary approaches toward understanding the pathogenesis of Hirschsprung disease

Affiliations
Review

Contemporary approaches toward understanding the pathogenesis of Hirschsprung disease

R P Kapur. Pediatr Pathol. 1993 Jan-Feb.

Erratum in

  • Pediatr Pathol 1993 Mar-Apr;13(2):following 270

Abstract

Hirschsprung disease (HD), or congenital aganglionosis coli, is a birth defect with heterogeneous causes. In an effort to understand the molecular and cellular bases for this disorder, researchers have investigated enteric neurodevelopment in normal animals and compared these findings with observations of inbred animal strains that develop aganglionosis coli due to mutations at specific genetic loci. Recent technological advances, including use of retroviral and fluorescent lineage makers, immunohistochemical probes, and transgenic mice, have provided insights into the origins, behavior, and properties of enteric neuroblasts. Experiments with mutant murine embryos indicate that aganglionosis coli results from primary failure of neural crest-derived neuroblasts to colonize the distal colon. In at least one model, impaired colonization by neuroblasts may be secondary to environmental defects restricted to colonic mesenchyme. The discovery that human piebald trait, a hereditary disorder with a high incidence of HD, is caused by mutations in a growth factor receptor highlights the importance of regulatory intercellular interactions between nonneuroblastic mesenchyme and neuroblasts during normal development of the enteric nervous system. These observations, coupled with advances in molecular genetics, set the stage for dramatic progress in this field of research in the near future.

PubMed Disclaimer

Similar articles

Cited by

Substances