High stimulatory activity of dendritic cells from diabetes-prone BioBreeding/Worcester rats exposed to macrophage-derived factors
- PMID: 8486773
- PMCID: PMC288202
- DOI: 10.1172/JCI116426
High stimulatory activity of dendritic cells from diabetes-prone BioBreeding/Worcester rats exposed to macrophage-derived factors
Abstract
Dendritic cells (DC) present antigen and initiate T cell-mediated immune responses. To investigate the possible association of autoimmunity with DC function, we compared the accessory activity of splenic DC from Wistar/Furth (WF) and diabetes-prone (DP) BioBreeding (BB) rats. The latter develop autoimmune diabetes and thyroiditis. DC function was quantified in vitro by measuring T cell proliferation in mitogen-stimulated and mixed lymphocyte reactions. When purified without macrophage coculture, WF and DP DC displayed similar levels of accessory activity. In contrast, when purified by a method involving coculture with macrophages, DC from DP rats consistently displayed greater accessory activity. This finding could not be explained by morphological or phenotypic differences between DP and WF DC. In accessory activity assays performed after reciprocal DC cocultures with DP and WF macrophages, DP DC exhibited higher accessory activity irrespective of macrophage donor strain. We also compared the accessory activity of WF and DP DC cultured in the presence of conditioned medium and a mixture of IL-1 and GM-CSF. In all assays, DP DC exhibited higher accessory activity. In studies of (WF x DP) F1 hybrids, the high accessory activity of DP DC was observed to be heritable, and studies of WF and DP radiation chimeras indicated that the effect was an intrinsic property of the DP hematopoietic system. We conclude: (a) splenic DC from DP and WF rats possess similar basal levels of accessory potency; (b) after interaction with macrophages, DC of DP origin are capable of greater stimulatory activity than are WF DC; and (c) the mechanism responsible for this phenomenon involves differential responsiveness of DP and WF DC to macrophage-derived factors such as IL-1 and GM-CSF.
Similar articles
-
Signs of immaturity of splenic dendritic cells from the autoimmune prone biobreeding rat: consequences for the in vitro expansion of regulator and effector T cells.J Immunol. 1999 Feb 1;162(3):1795-801. J Immunol. 1999. PMID: 9973444
-
A functional and phenotypic study on immune accessory cells isolated from the thyroids of Wistar and autoimmune-prone BB-DP rats.J Autoimmun. 2000 Dec;15(4):417-24. doi: 10.1006/jaut.2000.0438. J Autoimmun. 2000. PMID: 11090240
-
Enhancement of IL-2-induced T cell proliferation by a novel factor(s) present in murine spleen dendritic cell-T cell culture supernatants.J Immunol. 1989 Feb 15;142(4):1183-94. J Immunol. 1989. PMID: 2644351
-
Regulation of the immunostimulatory activity of rat pulmonary interstitial dendritic cells by cell-cell interactions and cytokines.Am J Respir Cell Mol Biol. 1994 Dec;11(6):682-91. doi: 10.1165/ajrcmb.11.6.7946397. Am J Respir Cell Mol Biol. 1994. PMID: 7946397
-
Mechanisms of dendritic cell function.Immunol Today. 1990 Jun;11(6):206-11. doi: 10.1016/0167-5699(90)90084-m. Immunol Today. 1990. PMID: 2191684 Review.
Cited by
-
The role of interleukin-1 in the pathogenesis of IDDM.Diabetologia. 1996 Sep;39(9):1005-29. doi: 10.1007/BF00400649. Diabetologia. 1996. PMID: 8877284 Review. No abstract available.