Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May 11;32(18):4738-45.
doi: 10.1021/bi00069a007.

Posttranscriptional regulation of chimeric human transferrin genes by iron

Affiliations

Posttranscriptional regulation of chimeric human transferrin genes by iron

L A Cox et al. Biochemistry. .

Abstract

Transferrin, the transferrin receptor, and ferritin are integral to the body's management of iron, an element required for life but highly toxic when present in excess. The transferrin receptor and ferritin are regulated posttranscriptionally by iron: the transferrin receptor by mRNA stability and ferritin by mRNA translation. Results described here indicate that transferrin, like ferritin, is regulated by iron at the level of translation. Chimeric genes introduced into the mouse genome were composed of the human transferrin 5' regulatory region fused to the chloramphenicol acetyl transferase (CAT) reporter gene. Iron administration to transgenic mice resulted in a significant decrease of transferrin-directed CAT enzyme activity and CAT protein in liver, but no significant decrease in human transferrin-CAT mRNA levels. Binding of specific RNA iron regulatory elements by proteins in cytoplasmic extracts have been shown to regulate ferritin and transferrin receptor synthesis. Similar results have been obtained with transferrin mRNA. A decreased binding of human transferrin 5'-untranslated region RNA by factors in cytoplasmic extracts of livers from mice receiving iron was found when compared to extracts from control mice. A human transferrin RNA-protein complex migrated electrophoretically with the same mobility as a ferritin iron responsive element RNA-iron responsive element binding protein complex. The ferritin iron responsive element RNA also competed with the human transferrin 5'-untranslated region RNA-protein complexes formed and vice versa. Therefore, iron modulation of human transferrin may share a factor common or similar to that observed in ferritin and transferrin receptor iron modulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources