Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May;12(5):1745-53.
doi: 10.1002/j.1460-2075.1993.tb05822.x.

Phosphorylation and dephosphorylation affect functional characteristics of chloroplast and etioplast transcription systems from mustard (Sinapis alba L.)

Affiliations

Phosphorylation and dephosphorylation affect functional characteristics of chloroplast and etioplast transcription systems from mustard (Sinapis alba L.)

K Tiller et al. EMBO J. 1993 May.

Abstract

Chloroplast and etioplast RNA polymerase preparations each consist of a multi-subunit core and a set of three sigma-like transcription factors, SLF67, SLF52 and SLF29. Despite this structural similarity, the enzymes from either plastid type are functionally distinct, as is reflected by their different promoter usage and the tight core-SLF association in the etioplast but not the chloroplast holoenzyme. We tested whether these differences are related to phosphorylation. Treatment of the chloroplast enzyme with protein kinase converted it to an etioplast-type form and vice versa, treatment of the etioplast enzyme with phosphatase generated chloroplast-type properties. Although both the core enzyme and the SLF polypeptides were phosphorylation targets, only the SLFs seem to confer plastid-type-specific DNA binding characteristics. Methylation interference and DNase I footprint patterns in the psbA promoter region were found to correlate with the phosphorylation state of the chloroplast and etioplast enzymes.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Acta Radiol Diagn (Stockh). 1982;23(2):81-6 - PubMed
    1. Plant Mol Biol. 1992 May;19(1):149-68 - PubMed
    1. Annu Rev Biochem. 1988;57:839-72 - PubMed
    1. EMBO J. 1990 Dec;9(12):3981-7 - PubMed
    1. Trends Genet. 1991 Nov-Dec;7(11-12):356-61 - PubMed

Publication types