Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Mar;53(2):297-301.
doi: 10.1016/0306-4522(93)90196-m.

Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation

Affiliations

Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation

P A Lapchak et al. Neuroscience. 1993 Mar.

Abstract

Brain-derived neurotrophic factor is selectively expressed at relatively high levels in the rat hippocampal formation (for review, see Ref. 12; see also Refs 8, 13, 19, 20, 27) where it is thought to be involved in mechanisms of neurodegeneration and/or neural protection related to the plasticity of hippocampal neurons. Functional responses to brain-derived neurotrophic factor appear to be mediated by a tyrosine receptor kinase B with the possible involvement of the p75 low-affinity nerve growth factor receptor protein. Among the many characteristics of Alzheimer's disease is an upregulation of immune mediators in and around senile plaques in Alzheimer's disease. Recently, interleukin-1 has been shown to be detrimental to the long-term survival of embryonic hippocampal neurons in culture. Thus, if the same occurs in vivo, it is possible that the accumulation of interleukin-1 in Alzheimer's disease hippocampus may be responsible for altered hippocampal neuron synaptic plasticity. This may occur either by a direct action of interleukin-1 on hippocampal neurons or possibly indirectly by stimulating beta-amyloid production. Other indirect mechanisms may involve growth or survival factors such as the neurotrophin brain-derived neurotrophic factor which is thought to play an important role in the plastic responses of hippocampal neurons. A recent study showed that brain-derived neurotrophic factor mRNA is selectively decreased in the dentate gyrus in Alzheimer's disease. The reason(s) for the decrease of brain-derived neurotrophic factor mRNA is not known, but one possibility may be associated with the enhanced expression of interleukin-1 in the hippocampus of Alzheimer's disease patients.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources