Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May;12(4):363-70.
doi: 10.1089/dna.1993.12.363.

Mutation analysis of Saccharomyces cerevisiae CDC6 promoter: defining its UAS domain and cell cycle regulating element

Affiliations

Mutation analysis of Saccharomyces cerevisiae CDC6 promoter: defining its UAS domain and cell cycle regulating element

C Zhou et al. DNA Cell Biol. 1993 May.

Abstract

Using beta-galactosidase as the reporter gene, we carried out mutagenesis experiments to investigate the 5' promoter region of the CDC6 gene. Our results showed that the DNA element, between -262 and -170, is important for the upstream activating sequence (UAS) activities. On the basis of the DNA sequence, there is a Mlu I (-204) and a Mlu I-like (-216) element located within the middle of the UAS region. Insertion and deletion mutagenesis analysis of the Mlu I sequence has indicated that the internal CGCG sequence of the Mlu I site (ACGCGT) is important for gene expression. Furthermore, when DNA elements containing the Mlu I sites were subcloned into the tester plasmid, periodic expression of a reporter gene throughout the cell cycle was observed, as evidenced by the beta-galactosidase activities and lacZ mRNA. Because the possible transcriptional initiation sites of the CDC6 transcript have been previously defined (Zhou and Jong, 1990, J. Biol. Chem. 264, 9022-9029), we propose a model regarding the construct of the CDC6 promoter region. This 5' promoter construct contains a UAS region and a Mlu I element (MCB box) typical of a family of cell cycle-regulated genes involved in DNA metabolism. Previous genetic studies have not completely defined the CDC6 execution point in the functional yeast cell cycle map. Our results favor the possibility that the CDC6 gene is required, and directly involved, in the initiation of DNA replication.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources