Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May 18;32(19):5083-92.
doi: 10.1021/bi00070a016.

The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo

Affiliations

The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo

A Zapun et al. Biochemistry. .

Abstract

The protein DsbA facilitates disulfide bond formation in the periplasm of Escherichia coli. It has only two cysteine residues that are separated in the sequence by two other residues and are shown to form a disulfide bond reversibly. Chemical modification studies demonstrate that only one of the cysteine residues has an accessible thiol group in the reduced protein. Equilibrium and kinetic characterization of thiol-disulfide exchange between DsbA and glutathione showed that the DsbA disulfide bond was 10(3)-fold more reactive than a normal protein disulfide. Similarly, the mixed disulfide between the accessible cysteine residue and glutathione was 10(4)-fold more reactive than normal. The overall equilibrium constant for DsbA disulfide bond formation from GSSG was only 8 x 10(-5) M. These properties indicate that disulfide-bonded DsbA is a potent oxidant and ideally suited for generating protein disulfide bonds. Disulfide bonds generally increase the stabilities of folded proteins, when the folded conformation reciprocally stabilizes the disulfide bonds. In contrast, the disulfide bond of DsbA was so unstable in the folded state that its stability increased by 4.5 +/- 0.1 kcal.mol-1 when the protein unfolded. This implies that the disulfide bond destabilizes the folded conformation of DsbA. This was confirmed by demonstrating that the reduced protein was 3.6 +/- 1.4 kcal.mol-1 more stable than that with the disulfide bond.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources