Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jun;72(6):1191-201.
doi: 10.1161/01.res.72.6.1191.

Extracellular Ca(2+)-dependent potentiation by cocaine of serotonin- and norepinephrine-induced contractions in rat vascular smooth muscle

Affiliations
Free article

Extracellular Ca(2+)-dependent potentiation by cocaine of serotonin- and norepinephrine-induced contractions in rat vascular smooth muscle

C Watanabe et al. Circ Res. 1993 Jun.
Free article

Abstract

Using front-surface fluorometry, we determined the effects of cocaine on force and cytosolic Ca2+ concentration ([Ca2+]i) in the rat aorta. We also examined the effects of cocaine on 45Ca2+ influx. Cocaine (10(-7) to 10(-4) M) alone did not alter the resting level of [Ca2+]i and force. Cocaine (< 10(-4) M), in a concentration-dependent manner, potentiated the 10(-6) M serotonin (5-HT)-induced or 10(-8) M norepinephrine (NE)-induced sustained increase in [Ca2+]i and force in the presence of extracellular Ca2+, whereas it had no potentiating effects in Ca(2+)-free solution. Similar potentiating effects of cocaine were observed in pharmacologically denervated strips. Cocaine (10(-5) M) produced a leftward shift of concentration-response curves for both 5-HT- and NE-induced increases in [Ca2+]i and force with no effect on the maximal response or the relations between [Ca2+]i and force. Cocaine (10(-5) M also accelerated the 45Ca2+ influx during activation by 10(-6) M 5-HT or by 10(-8) M NE. Cocaine (> 10(-3) M) inhibited 5-HT-, NE-, and high-K+ depolarization-induced contractions accompanied by decreases in [Ca2+]i in normal physiological salt solution and 5-HT- or NE-induced transient increase in [Ca2+]i and force in Ca(2+)-free physiological salt solution. Thus, low concentrations of cocaine potentiate NE- or 5-HT-induced contraction by augmenting the increase in [Ca2+]i. These potentiating effects may derive from either an increase in the affinity of the receptors to agonists or an increase in the Ca2+ influx. On the other hand, high concentrations of cocaine (> 10(-3) M) have a relaxant effect on vascular smooth muscle, as a result of a decrease in [Ca2+]i.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources