Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Mar-Apr;9(2 Suppl):S111-5.

Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea

Affiliations
  • PMID: 8499358

Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea

Z Bor et al. Refract Corneal Surg. 1993 Mar-Apr.

Abstract

Excimer lasers are now used for corneal surgery; however, the physical processes occurring during photoablation of the cornea are incompletely understood. High speed laser-based photographic arrangement was constructed. The temporal resolution was better than 1 ns. The setup could work as a Schlieren arrangement, which is sensitive to the refractive index change caused by the shock wave propagating in the air above the eye. With minor changes the setup was converted into a shadowgraph, which could detect the ablation plume and the waves propagating on the surface of the eye. Due to the impact of the excimer laser pulse onto the surface of the cornea, a shock wave was generated in the air. The shadowgraph clearly showed the ejection of the ablated cornea. The ejection velocity of the plume was found to be over 600 m/s. It was shown for the first time that the recoil forces of the plume are generating a wave on the surface of the eye. The laser-based high speed photographic arrangement is a powerful arrangement in the study of physical effects occurring during photoablation of the cornea.

PubMed Disclaimer

Publication types

LinkOut - more resources