Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May 25;32(20):5339-51.
doi: 10.1021/bi00071a009.

Mass spectrometric identification and quantitation of arachidonate-containing phospholipids in pancreatic islets: prominence of plasmenylethanolamine molecular species

Affiliations

Mass spectrometric identification and quantitation of arachidonate-containing phospholipids in pancreatic islets: prominence of plasmenylethanolamine molecular species

S Ramanadham et al. Biochemistry. .

Abstract

D-Glucose induces insulin secretion from beta-cells of pancreatic islets by processes involving glycolytic metabolism and generation of ATP. Glucose also induces hydrolysis of beta-cell membrane phospholipids and accumulation of nonesterified arachidonate, which facilitates Ca2+ entry and the rise in beta-cell Ca2+ concentration that is a critical signal in the induction of insulin secretion. Glucose-induced hydrolysis of arachidonate from beta-cell phospholipids is mediated in part by an ATP-stimulated, Ca(2+)-independent (ASCI)-phospholipase A2 (PLA2), which, in vitro, prefers plasmalogen over diacylphospholipid substrates, but it is not known whether islets contain plasmalogens. We have identified and quantitated the major species of arachidonate-containing phospholipids in pancreatic islets by high-performance liquid chromatographic and mass spectrometric analyses. Arachidonate has been found to constitute 30% of the total islet glycerolipid fatty acyl mass. Ethanolamine phospholipids contain 30% of total islet arachidonate, and 44% of that amount resides in three plasmenylethanolamine molecular species with residues of palmitic, oleic, or stearic aldehydes in the sn-1 position. These endogenous islet plasmenylethanolamine species are hydrolyzed more rapidly than phosphatidylethanolamine species by islet ASCI-PLA2 in vitro and are also hydrolyzed in intact islets stimulated with secretagogues. ASCI-PLA2-catalyzed hydrolysis of islet plasmenylethanolamine species in vitro is inhibited by a selective haloenol lactone suicide substrate (HELSS) which is sterically similar to plasmalogens, and HELSS also inhibits all temporal phases of both eicosanoid release and insulin secretion from secretagogue-stimulated pancreatic islets. Islet beta-cell ASCI-PLA2-catalyzed hydrolysis of arachidonate from endogenous plasmenylethanolamine substrates may be an intermediary biochemical event in the induction of insulin secretion.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources