Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May 14;1148(1):51-60.
doi: 10.1016/0005-2736(93)90159-w.

Polycation-induced enhancement of epithelial paracellular permeability is independent of tight junctional characteristics

Affiliations

Polycation-induced enhancement of epithelial paracellular permeability is independent of tight junctional characteristics

G T McEwan et al. Biochim Biophys Acta. .

Abstract

The nature of polycation-induced change in transepithelial permeability was investigated in strains I (tight) and II (leaky) MDCK epithelial monolayers. Apical exposure to poly(L-lysine) (PLL, mol. wt. (MW) approximately 20,000) induced a dose-dependent increase in transepithelial conductance (GT) in both strains which correlated with increasing transepithelial flux of extracellular markers (thiourea/inulin) indicating that PLL enhanced paracellular permeability in these epithelia. Coincident with the increase in GT, PLL also induced an inward short circuit current (Isc) which was associated with the early phase of the increase in GT and may be responsible for part of it. Morphological studies showed that immunofluorescent staining of the tight junction protein, ZO-1, was abolished following PLL exposure. In addition, F-actin staining in monolayers challenged with PLL demonstrated breaks in the zonulae occludentes at the apical surface. PLL had similar effects on monolayers of T84 and HCT-8 human intestinal cells indicating that polycation action may be general for a range of epithelial types. We conclude that epithelial exposure to polycations results in opening of the paracellular route by mechanisms which are independent of tight junction characteristics.

PubMed Disclaimer

Publication types

LinkOut - more resources