Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr;39(4):357-62.
doi: 10.1139/m93-052.

Molecular analysis of the plasmid-borne bed gene cluster from Pseudomonas putida ML2 and cloning of the cis-benzene dihydrodiol dehydrogenase gene

Affiliations

Molecular analysis of the plasmid-borne bed gene cluster from Pseudomonas putida ML2 and cloning of the cis-benzene dihydrodiol dehydrogenase gene

H M Tan et al. Can J Microbiol. 1993 Apr.

Abstract

Pseudomonas putida ML2 contains a large catabolic plasmid, pHMT112, carrying genes that encode the dioxygenase and dehydrogenase involved in the catabolism of benzene via the ortho or beta-ketoadipate pathway. pHMT112 was derived from a larger and less stable plasmid in P. putida ML2 following growth on succinate as carbon and energy source but was, however, stably maintained in P. putida even in the absence of selection for growth on benzene. Cleavage sites for the restriction endonucleases DraI, XbaI, and BamHI were mapped on the plasmid. A region of the plasmid, downstream of the benzene dioxygenase genes (bedC1C2BA), was found to encode the cis-benzene dihydrodiol dehydrogenase gene (bedD). Recombinant Escherichia coli containing bedC1C2BAD genes was found to express benzene dioxygenase and dehydrogenase activity, indicated by the production of catechol when incubated in the presence of benzene. Hybridization using benzene dioxygenase genes as probes was used to construct a restriction map of the 35.5-kb XhoI-DraI fragment on which the bed operon was located.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources