Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Mar;14(3):185-200.
doi: 10.1016/0143-4160(93)90066-f.

Intracellular calcium mobilization by inositol 1,4,5-trisphosphate: intracellular movements and compartmentalization

Affiliations

Intracellular calcium mobilization by inositol 1,4,5-trisphosphate: intracellular movements and compartmentalization

J A Connor. Cell Calcium. 1993 Mar.

Abstract

Intracellular calcium ion (Ca2+) changes in NIH-3T3 fibroblasts responding to inositol 1,4,5-trisphosphate (IP3) injections have been monitored using high resolution digital imaging of the calcium indicator Fura-2. Ester loaded and microinjected indicator report radically different patterns of Ca2+ change during the IP3 response. These differences arise from intracellular compartmentalization of the ester loaded indicator which can seriously distort reported Ca2+ levels. Prominent among these aberrant responses is a signal in which Ca2+ levels in the cell nucleus appear to exceed those in the rest of the cell, and an apparent slowing of the Ca2+ recovery time-course throughout the cell when temperature is increased. Similar behavior is observed in other cell types. Judicious use of both loading techniques can provide information on Ca2+ movements into organelles that might otherwise escape detection. The Ca2+ rise normally measured in bulk or integrated single cell measurements is a complex mix of cytosol/nucleus and organellar changes. Much, if not all, of the observable organellar change is an accumulation, not release, of Ca2+ following the IP3 injection. The Golgi apparatus is a conspicuous early site for this accumulation, and mitochondria show a large, temperature sensitive uptake that is capable of limiting the maximal Ca2+ change during the response.

PubMed Disclaimer

LinkOut - more resources