Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jun:(291):20-8.

Mechanisms of glenohumeral joint stability

Affiliations
  • PMID: 8504601

Mechanisms of glenohumeral joint stability

S Lippitt et al. Clin Orthop Relat Res. 1993 Jun.

Abstract

The biomechanics of glenohumeral stability involve several static and dynamic mechanisms to achieve the intricate balance between shoulder mobility and stability. In conjunction with recent in vitro studies, two important stabilizing mechanisms, concavity compression and scapulohumeral balance, were described. Concavity compression refers to the stability obtained by compressing the humeral head into the concave glenoid fossa. Increasing the magnitude of the compressive load, as provided by dynamic muscle contraction, and the depth of the glenoid concavity, which varies from the asymmetric geometry, enhance concavity compression stabilization. The related scapulohumeral balance refers to the dynamic positioning of the glenohumeral joint so that the joint reaction force is balanced within the glenoid fossa. The greater the arc provided by the glenoid, the larger the range of joint force angles acting through the humeral head that may be stabilized. The presence of an intact glenoid labrum is important to both mechanisms. Concavity compression and scapulohumeral balance may be of particular importance to glenohumeral joint stability in the midrange of motion where the capsuloligamentous constraints are lax. Clinical correlation of these mechanisms contributes to the understanding of glenohumeral instability.

PubMed Disclaimer

LinkOut - more resources