Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jun 5;268(16):11639-54.

Plant sterol biosynthesis. Identification and characterization of two distinct microsomal oxidative enzymatic systems involved in sterol C4-demethylation

Affiliations
  • PMID: 8505296
Free article

Plant sterol biosynthesis. Identification and characterization of two distinct microsomal oxidative enzymatic systems involved in sterol C4-demethylation

S Pascal et al. J Biol Chem. .
Free article

Abstract

Membrane-bound enzymatic systems obtained from maize embryos that catalyze the oxidative C4-monodemethylation of 4,4-dimethyl- and 4 alpha-methylsterols have been investigated. Enzymatic assay conditions have been developed for the first time to detect the C4-monodemethylated products formed. The properties of the microsomal systems have been established for co-factor requirements and kinetics. The demethylation process has been interrupted to demonstrate the formation of stable, oxygenated intermediates. In addition to the 3-keto and 3 beta-hydroxy-4-monodemethylated products formed, three new sterols have been identified. 3 beta-Hydroxy-4 beta,14 alpha-dimethyl-5 alpha-ergosta-9 beta,19-cyclo-24(24(1))-en-4 alpha-hydroxy methyl was identified for the first time as the immediate metabolite of 24-methylenecycloartanol by 4 alpha-methyl oxidase in addition to 3 beta-hydroxy-4 beta,14 alpha-dimethyl-5 alpha-ergosta-9 beta,19-cyclo- 24(24(1))-en-4 alpha-carboxylic-acid and 3 beta-hydroxy-5 alpha-stigmasta-7,24(24(1))-dien-4 alpha-carboxylic-acid, intermediates involved respectively in the oxidative demethylation of 24-methylenecycloartanol and 24-ethylidenelophenol. Proton nuclear magnetic resonance studies of enzymatically produced 3 beta-hydroxy-4 beta,14 alpha-dimethyl-5 alpha-ergosta-9 beta,19-cyclo-24(24(1))en-4 alpha-carboxylic acid indicate that the 4 alpha-methyl group of 24-methylenecycloartanol is oxidized and subsequently removed during its enzymatic conversion to cycloeucalenol. From a series of incubations with 25 natural or synthetic 4,4-dimethyl and 4 alpha-methylsterols, a high degree of substrate specificity for the oxidation at C4 of 4,4-dimethyl- and 4 alpha-methylsterols was determined. Our results indicate that oxidation of the 4 alpha-methyl group of the 4,4-geminal dimethylsterols requires the more flexible and presumably bent conformation of 9 beta,19-cyclopropylsterols and the absence of a delta 24(25) unsaturation, whereas the rigid planar conformation of delta 7-unsaturated sterols favors oxidation of 4 alpha-methylsterols. Distinct strict structural requirements for the oxidation of 4,4-dimethyl- and 4 alpha-methylsterols and different sensitivity toward cyanide ions and 3 beta,5 alpha,6 alpha-stigmastatriol, a novel inhibitor of 4 alpha-methylsterol C4 oxidase activity, are consistent with the conclusion that two distinct oxidative systems are involved in the removal of the first and second C4-methyl group of phytosterol precursors. Moreover, the present study directly establishes that during the conversion of cycloartenol to phytosterol one C4 dealkylation occurs before the removal of the 14 alpha-methyl group.

PubMed Disclaimer

LinkOut - more resources