Chaos and the evolution of cooperation
- PMID: 8506355
- PMCID: PMC46660
- DOI: 10.1073/pnas.90.11.5091
Chaos and the evolution of cooperation
Abstract
The "iterated prisoner's dilemma" is the most widely used model for the evolution of cooperation in biological societies. Here we show that a heterogeneous population consisting of simple strategies, whose behavior is totally specified by the outcome of the previous round, can lead to persistent periodic or highly irregular (chaotic) oscillations in the frequencies of the strategies and the overall level of cooperation. The levels of cooperation jump up and down in an apparently unpredictable fashion. Small recurrent and simultaneous invasion attempts (caused by mutation) can change the evolutionary dynamics from converging to an evolutionarily stable strategy to periodic oscillations and chaos. Evolution can be twisted away from defection, toward cooperation. Adding "generous tit-for-tat" greatly increases the overall level of cooperation and can lead to long periods of steady cooperation. Since May's paper [May, R. M. (1976) Nature (London) 261, 459-467], "simple mathematical models with very complicated dynamics" have been found in many biological applications, but here we provide an example of a biologically relevant evolutionary game whose dynamics display deterministic chaos. The simulations bear some resemblance to the irregular cycles displayed by the frequencies of host genotypes and specialized parasites in evolutionary "arms races" [Hamilton, W. D., Axelrod, R. & Tanese, R. (1990) Proc. Natl. Acad. Sci. USA 87, 3566-3573; Seger, J. (1988) Philos. Trans. R. Soc. London B 319, 541-555].
Similar articles
-
Duality between cooperation and defection in the presence of tit-for-tat in replicator dynamics.J Theor Biol. 2017 Oct 7;430:215-220. doi: 10.1016/j.jtbi.2017.07.026. Epub 2017 Jul 26. J Theor Biol. 2017. PMID: 28755954
-
Chaos, oscillation and the evolution of indirect reciprocity in n-person games.J Theor Biol. 2008 Jun 21;252(4):686-93. doi: 10.1016/j.jtbi.2008.02.007. Epub 2008 Feb 16. J Theor Biol. 2008. PMID: 18371983
-
Spatialization and greater generosity in the stochastic Prisoner's Dilemma.Biosystems. 1996;37(1-2):3-17. doi: 10.1016/0303-2647(95)01541-8. Biosystems. 1996. PMID: 8924636 Review.
-
Collapse of cooperation in evolving games.Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17558-63. doi: 10.1073/pnas.1408618111. Epub 2014 Nov 24. Proc Natl Acad Sci U S A. 2014. PMID: 25422421 Free PMC article.
-
Resolving the iterated prisoner's dilemma: theory and reality.J Evol Biol. 2011 Aug;24(8):1628-39. doi: 10.1111/j.1420-9101.2011.02307.x. Epub 2011 May 23. J Evol Biol. 2011. PMID: 21599777 Review.
Cited by
-
The importance of mechanisms for the evolution of cooperation.Proc Biol Sci. 2015 Aug 22;282(1813):20151382. doi: 10.1098/rspb.2015.1382. Proc Biol Sci. 2015. PMID: 26246554 Free PMC article.
-
The Prisoner's Dilemma and polymorphism in yeast SUC genes.Proc Biol Sci. 2004 Feb 7;271 Suppl 3(Suppl 3):S25-6. doi: 10.1098/rsbl.2003.0083. Proc Biol Sci. 2004. PMID: 15101409 Free PMC article.
-
Computation and Simulation of Evolutionary Game Dynamics in Finite Populations.Sci Rep. 2019 May 6;9(1):6946. doi: 10.1038/s41598-019-43102-z. Sci Rep. 2019. PMID: 31061385 Free PMC article.
-
Swarm intelligence inspired shills and the evolution of cooperation.Sci Rep. 2014 Jun 9;4:5210. doi: 10.1038/srep05210. Sci Rep. 2014. PMID: 24909519 Free PMC article.
-
Comparing reactive and memory-one strategies of direct reciprocity.Sci Rep. 2016 May 10;6:25676. doi: 10.1038/srep25676. Sci Rep. 2016. PMID: 27161141 Free PMC article.
References
MeSH terms
LinkOut - more resources
Full Text Sources