Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jul;73(1):193-204.
doi: 10.1161/01.res.73.1.193.

Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells

Affiliations
Free article

Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells

C M Shanahan et al. Circ Res. 1993 Jul.
Free article

Abstract

To isolate specific markers of both differentiated and proliferating vascular smooth muscle cells (VSMCs), we used the technique of differential cDNA screening using RNA from cultured rat aortic VSMCs. The tissue specificity of expression of all of the cDNAs isolated was determined by Northern analysis. We isolated seven distinct cDNAs that were more strongly expressed in freshly dispersed, differentiated, aortic VSMCs compared with dedifferentiated late-passage cells. These were the cDNAs for tropoelastin, a matrix protein; alpha-smooth muscle (SM) actin, gamma-SM actin, calponin, and phospholamban, which are all proteins associated with the contractile function of differentiated VSMCs; SM22 alpha, a smooth muscle-specific protein of unknown function, and CHIP28, a putative membrane channel protein that is not highly expressed in other SM tissues and may therefore be a new VSMC marker. Two cDNAs that were expressed preferentially in late-passage dedifferentiated VSMCs were also isolated. These were the cDNAs for osteopontin and matrix Gla protein (MGP). Like CHIP28, MGP was strongly expressed in aortic VSMCs but not in other types of tissues containing SM cells, suggesting that both have specific functions in vascular tissue. Osteopontin and MGP have both previously been isolated from developing bone. Their expression in proliferating VSMCs suggests that they may be involved in regulating the calcification that commonly occurs in vascular lesions. The set of cDNAs obtained extends the range of DNA probes that are available for identifying VSMCs and characterizing their phenotype in vivo by in situ hybridization. Therefore, they should aid in the analysis of gene expression during the development of vessel lesions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources