Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jun 15;268(17):12624-30.

Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization

Affiliations
  • PMID: 8509401
Free article

Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization

A George et al. J Biol Chem. .
Free article

Abstract

Acidic phosphorylated proteins have been shown to be prominent constituents of the extracellular matrix of bone and dentin. The acidic phosphoproteins of bone contain more glutamic acid than aspartic acid and a lower serine content than either. On the other hand, the major dentin acidic phosphoproteins, phosphophoryns, have been defined as aspartic acid- and serine-rich proteins, with a lesser content of glutamic acid. Both sets of phosphoproteins have been implicated as key participants in regulating mineralization, but it has been difficult to unify their mechanisms of action. We have now identified, by cDNA cloning, a new serine-rich acidic protein of the dentin matrix, AG1, with a composition intermediate between the bone acidic proteins and dentin phosphophoryns. AG1 has numerous acidic consensus sites for phosphorylation by both casein kinases I and II. Immunochemical and organ culture biosynthetic studies show that AG1 is present in phosphorylated form at low levels in the dentin matrix. If fully phosphorylated, AG1 would bear a net charge of -175/molecule of 473 residues. AG1 contains single RGD integrin binding and N-glycosylation sequences. The overall picture that emerges is that of a matrix-associated acidic phosphoprotein, with a potentially high calcium ion binding capacity, present at levels compatible with a regulatory role in dentin mineralization.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources