Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May;239(1-2):122-8.
doi: 10.1007/BF00281610.

The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype

Affiliations

The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype

M Wolter et al. Mol Gen Genet. 1993 May.

Abstract

Recessive mlo resistance alleles of the Mlo locus in barley control a non race-specific resistance response to infection by the obligate biotrophic fungus Erysiphe graminis f.sp. hordei. All the mlo alleles analysed stop fungal growth at the same developmental stage within a subcellularly restricted, highly localized cell wall apposition directly beneath the site of abortive fungal penetration. We report that near-isogenic lines carrying the alleles mlo1, mlo3 or mlo5 undergo dramatic spontaneous formation of cell wall appositions, not only in the absence of the fungal pathogen but also in sterile grown plants. A comparative study of spontaneous and infection-triggered cell wall appositions reveals a high degree of similarity with respect to structure, chemical composition and distinct localization within plant tissue. We show that the rate of spontaneous apposition formation is dependent on the genetic background of the plant and that its onset is under developmental control. Furthermore, spontaneous formation of wall appositions is specifically triggered by mlo alleles, since it is unaffected in the presence of the race-specific resistance allele Mlg. We propose a model for the function of the Mlo locus that suggests that both Mlo and mlo alleles control qualitatively the same apposition-based resistance mechanism, which, in the presence of the wild-type Mlo allele, is merely less efficient to provide protection against the currently common races of E. graminis f.sp. hordei.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3691-5 - PubMed
    1. Hereditas. 1974;77(1):89-148 - PubMed

Publication types

LinkOut - more resources