Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Apr;62(4):461-5.
doi: 10.1016/0002-9343(77)90397-7.

Pharmacokinetics in renal disease

Pharmacokinetics in renal disease

G Levy. Am J Med. 1977 Apr.

Abstract

The physiologic perturbations associated with renal disease can have a pronounced effect on the kinetics of elimination of drugs and their metabolites from the body. Drugs are ordinarily cleared from the body by a number of routes, each of which can be characterized by a clearance value. The sum of these clearances (renal, hepatic, etc.) is the total or body clearance which is inversely proportional to the steady-state plasma concentration produced by a given drug dosage regimen. The quantitative contribution of each route of elimination to the metabolic fate of a drug is proportional to the clearance value of that route relative to the body clearance. As a first approximation, the reduction in the renal clearance of a drug caused by renal disease is proportional to the reduction in the renal clearance of creatinine. The metabolic (biotransformation) clearance of many extensively plasma protein bound drugs is proportional to their free fraction (ratio of concentrations of free to total drug) in plasma. Since severe renal disease causes a reduction in the plasma protein binding of many drugs, the metabolic clearance of such drugs will be increased. The contribution of hemodialysis to the total clearance of a drug depends on the magnitude of the clearance obtained by hemodialysis relative to the magnitude of the body clearance of the drug on a day between dialyses. To compensate for the increased elimination of a drug during hemodialysis, the dosing rate (i.e., the dose per unit of time) must be increased by the factor (hemodialysis clearance and body clearance):body clearance, where body clearance is that during a day between dialyses. Further dosage compensation may be needed if body clearance is increased during hemodialysis due to decreased plasma protein binding of the drug. Under certain conditions, an increased accumulation of pharmacologically active drug metabolites during renal failure becomes a matter of serious concern.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources