Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993;53(1):1-19.
doi: 10.1016/0024-3205(93)90606-4.

Endogenous and exogenous modulation of gap junctional intercellular communication: toxicological and pharmacological implications

Affiliations
Review

Endogenous and exogenous modulation of gap junctional intercellular communication: toxicological and pharmacological implications

J E Trosko et al. Life Sci. 1993.

Abstract

During the evolution of single-celled organisms to multicellular metazoans, a family of highly conserved genes coding for proteins (connexins), which as hexameric units (connexins), has evolved to form intercellular channels (gap junctions). These gap junctions allow ions and small molecular weight molecules to flow between coupled cells, thereby facilitating synchronization of electrotonic or metabolic cooperation. Control of cell proliferation, cell differentiation and adaptive responses of differentiated cells have been speculated to be biological roles of gap junctions. The regulation of these gap junctions can occur at the transcriptional, translational and posttranslational levels. Transient downregulation by endogenous or exogenous chemicals can bring about adaptive or maladaptive consequences depending on circumstances. Stable abnormal regulation of gap junction function has been associated with the activation of several oncogenes. Several tumor suppressor genes have also been associated with the up-regulation of gap junction function. Since gap junctions exist in all organs of the multi-cellular organisms, the dysfunction of these gap junctions by various toxic chemicals which have cell type/tissue/organ specificity could bring about very distinct clinical consequences, such as embryo lethality or teratogenesis, reproductive dysfunction in the gonads, neurotoxicity of the CNS system, hyperplasia of the skin, and tumor promotion of initiated tissue. Understanding how many non-mutagenic chemicals might alter normal gap junction function should form the basis of "epigenetic" toxicology. On the other hand, restoring normal gap junction function to cells which have dysfunctional intercellular communication could be the basis for a new approach for therapeutic pharmaceuticals.

PubMed Disclaimer

Publication types

LinkOut - more resources