Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May;4(5):349-57.

Altered cytoplasmic/nuclear distribution of the c-myc protein in differentiating ML-1 human myeloid leukemia cells

Affiliations
  • PMID: 8518229

Altered cytoplasmic/nuclear distribution of the c-myc protein in differentiating ML-1 human myeloid leukemia cells

R W Craig et al. Cell Growth Differ. 1993 May.

Abstract

The c-myc gene is thought to play a role in cell proliferation and differentiation; for example, constitutive expression of an exogenously introduced c-myc gene can inhibit differentiation in hematopoietic cell lines. Expression of the endogenous c-myc gene has now been monitored during the differentiation, and associated loss of proliferation, of ML-1 human myeloblastic leukemia cells: c-myc mRNA remains detectable, at decreased levels, during differentiation along the monocyte/macrophage pathway induced with 12-O-tetradecanoylphorbol-13-acetate. c-myc protein also remains present, at undiminished levels, in mature, nonproliferative cells (assessed by immunoblotting and flow cytometry). The protein is, however, readily detectable in the cytoplasm of 12-O-tetradecanoylphorbol-13-acetate-induced cells, and some of this cytoplasmic c-myc exhibits a shift in electrophoretic mobility compared to the predominantly nuclear c-myc in uninduced cells. Furthermore, although c-myc protein continues to be synthesized in the mature cells (assessed by metabolic labeling/immunoprecipitation), loss of the protein from the cytoplasm and accumulation in the nucleus are slowed (assessed by pulse-chase metabolic labeling). These findings suggest that, during the 12-O-tetradecanoylphorbol-13-acetate-induced differentiation and loss of proliferation of ML-1 cells, c-myc protein is regulated through alterations that affect its cytoplasmic/nuclear distribution rather than its total cellular content.

PubMed Disclaimer

Publication types

MeSH terms

Substances