Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec;72(6):1412-9.
doi: 10.1038/bjc.1995.523.

Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators

Affiliations
Free PMC article

Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators

M P Schrey et al. Br J Cancer. 1995 Dec.
Free PMC article

Abstract

Malignant human breast tumours contain high levels of prostaglandin E2 (PGE2). However, the mechanisms controlling PGE2 production in breast cancer are unknown. This in vitro study investigates the capacity for PGE2 synthesis and metabolism in several human breast cancer cell lines and early passage human breast fibroblasts and seeks to identify potential regulatory factors which may control these pathways. Basal PGE2 production rose up to 30-fold in breast fibroblast lines on addition of exogenous arachidonic acid (10 microM), whereas no such changes were observed in six out of seven cancer cell lines, with the exception of modest increases in MDA-MB-231 cells. Interleukin 1 beta (IL-1 beta) also induced PGE2 production in breast fibroblasts in the presence of excess substrate, consistent with cyclo-oxygenase induction by the cytokine. Under these conditions only Hs578T cells and MDA-MB-231 cells demonstrated large increases in PGE2 in response to IL-1 beta or phorbol ester; no such responses were seen in MCF-7, T47-D, ZR-75-1, BT-20 or CLF-90-1 cells. In the absence of added arachidonate, bradykinin (BK) and endothelin-1 (ET-1), potentiated PGE2 production in IL-1 beta-treated fibroblasts, possibly by mobilising endogenous substrate. PGE2 also stimulated ET-1 production by breast cancer cells. In co-cultures with T47-D cells both basal and stimulated PGE2 production by breast fibroblasts was greatly reduced. This appeared to be due to metabolic inactivation by the cancer cell since T47-D cells readily converted PGE2 to 15-keto-PGE2. This apparent 15-hydroxy-PG dehydrogenase activity was stimulated by TPA and inhibited by cycloheximide. In conclusion, breast fibroblasts, particularly under the influence of inflammatory mediators, provide a potentially rich source for PGE2 production in breast tumours, whereas significant contributions from the epithelial tumour component may be restricted to cancer cells exhibiting an invasive phenotype. Metabolic inactivation by the cancer cells may also play an important role in the regulation of breast tumour PGE2 levels.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Br J Cancer. 1987 Sep;56(3):367-70 - PubMed
    1. Clin Sci (Lond). 1992 Sep;83(3):347-52 - PubMed
    1. Mol Endocrinol. 1988 May;2(5):459-64 - PubMed
    1. J Biol Chem. 1988 Nov 5;263(31):16051-4 - PubMed
    1. Cancer Res. 1989 Feb 15;49(4):826-32 - PubMed

Publication types

MeSH terms