Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents
- PMID: 8521288
- DOI: 10.1007/BF00961435
Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents
Abstract
We have developed a biophysical model of a pair of reciprocally inhibitory interneurons comprising an elemental heartbeat oscillator of the leech. We incorporate various intrinsic and synaptic ionic currents based on voltage-clamp data. Synaptic transmission between the interneurons consists of both a graded and a spike-mediated component. By using maximal conductances as parameters, we have constructed a canonical model whose activity appears close to the real neurons. Oscillations in the model arise from interactions between synaptic and intrinsic currents. The inhibitory synaptic currents hyperpolarize the cell, resulting in activation of a hyperpolarization-activated inward current Ih and the removal of inactivation from regenerative inward currents. These inward currents depolarize the cell to produce spiking and inhibit the opposite cell. Spike-mediated IPSPs in the inhibited neuron cause inactivation of low-threshold Ca++ currents that are responsible for generating the graded synaptic inhibition in the opposite cell. Thus, although the model cells can potentially generate large graded IPSPs, synaptic inhibition during canonical oscillations is dominated by the spike-mediated component.
Similar articles
-
Activation of intrinsic and synaptic currents in leech heart interneurons by realistic waveforms.J Neurosci. 1996 Aug 15;16(16):4958-70. doi: 10.1523/JNEUROSCI.16-16-04958.1996. J Neurosci. 1996. PMID: 8756427 Free PMC article.
-
Modeling the leech heartbeat elemental oscillator. II. Exploring the parameter space.J Comput Neurosci. 1995 Sep;2(3):237-57. doi: 10.1007/BF00961436. J Comput Neurosci. 1995. PMID: 8521289
-
Functional role of Ca2+ currents in graded and spike-mediated synaptic transmission between leech heart interneurons.J Neurophysiol. 1997 Apr;77(4):1779-94. doi: 10.1152/jn.1997.77.4.1779. J Neurophysiol. 1997. PMID: 9114236
-
Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns.J Neurobiol. 1995 Jul;27(3):390-402. doi: 10.1002/neu.480270311. J Neurobiol. 1995. PMID: 7673897 Review.
-
Neural control of heartbeat in the leech and in some other invertebrates.Physiol Rev. 1979 Jan;59(1):101-36. doi: 10.1152/physrev.1979.59.1.101. Physiol Rev. 1979. PMID: 220645 Review.
Cited by
-
Inferring and quantifying the role of an intrinsic current in a mechanism for a half-center bursting oscillation: A dominant scale and hybrid dynamical systems analysis.J Biol Phys. 2011 Jun;37(3):285-306. doi: 10.1007/s10867-011-9220-1. Epub 2011 Mar 17. J Biol Phys. 2011. PMID: 22654178 Free PMC article.
-
Activation of intrinsic and synaptic currents in leech heart interneurons by realistic waveforms.J Neurosci. 1996 Aug 15;16(16):4958-70. doi: 10.1523/JNEUROSCI.16-16-04958.1996. J Neurosci. 1996. PMID: 8756427 Free PMC article.
-
Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments.Front Neurosci. 2013 Nov 21;7:215. doi: 10.3389/fnins.2013.00215. eCollection 2013. Front Neurosci. 2013. PMID: 24319408 Free PMC article.
-
A model of a segmental oscillator in the leech heartbeat neuronal network.J Comput Neurosci. 2001 May-Jun;10(3):281-302. doi: 10.1023/a:1011216131638. J Comput Neurosci. 2001. PMID: 11443286
-
Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator.J Comput Neurosci. 2011 Apr;30(2):323-60. doi: 10.1007/s10827-010-0259-y. Epub 2010 Jul 20. J Comput Neurosci. 2011. PMID: 20644988