Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Nov 15;14(22):5457-66.
doi: 10.1002/j.1460-2075.1995.tb00232.x.

Electron transport regulates exchange of two forms of photosystem II D1 protein in the cyanobacterium Synechococcus

Affiliations

Electron transport regulates exchange of two forms of photosystem II D1 protein in the cyanobacterium Synechococcus

D Campbell et al. EMBO J. .

Abstract

Synechococcus sp. PCC 7942 modulates photosynthetic function by transiently replacing the constitutive D1 photosystem II protein, D1:1, with an alternate form, D1:2, to help counteract photoinhibition under excess light. We show that a temperature drop from 37 to 25 degrees C also drives D1:1/D1:2 exchange under constant, moderate light. Chilling or light-induced D1 exchange results from rapid loss of psbAI message coding for D1:1 and accumulation of psbAII and psbAIII messages coding for D1:2. During chilling, a large pool of a novel form, D1:2*, transiently accumulates, distinguishable from normal D1 by an increase in apparent molecular mass. D1:2* is not phosphorylated and is probably a functionally inactive, incompletely processed precursor. After acclimation to 25 degrees C, D1:2* disappears and D1:1 again predominates, although substantial D1:2 remains. Partial inhibition of electron transport under constant, moderate light also triggers the D1 exchange process. These treatments all increase excitation pressure on photosystem II relative to electron transport. Therefore, information from photosynthetic electron transport regulates D1 exchange without any requirement for a change in light intensity or quality, possibly via a redox sensing mechanism proximal to photosystem II.

PubMed Disclaimer

References

    1. J Biol Chem. 1989 May 5;264(13):7412-7 - PubMed
    1. Trends Biochem Sci. 1992 Feb;17(2):61-6 - PubMed
    1. J Biol Chem. 1988 Jun 25;263(18):8972-80 - PubMed
    1. Plant Mol Biol. 1989 Dec;13(6):693-700 - PubMed
    1. Plant Physiol. 1987 Feb;83(2):438-41 - PubMed

Publication types

MeSH terms