Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan;66(1):153-60.
doi: 10.1046/j.1471-4159.1996.66010153.x.

Homocysteate-evoked release of acetylcholine from the rabbit retina

Affiliations

Homocysteate-evoked release of acetylcholine from the rabbit retina

D M Linn et al. J Neurochem. 1996 Jan.

Abstract

The cholinergic amacrine cells of the rabbit retina can be labeled with [3H]choline and the activity of the cholinergic population monitored by following the release of [3H]acetylcholine. It has been proposed that L-homocysteate may be the main endogenous transmitter released onto cholinergic amacrine cells by bipolar cells. Therefore, we have examined the effects of the isomers of homocysteate on the release of [3H]acetylcholine. In magnesium-free medium, D-homocysteate was slightly more potent than the L-isomer. The addition of magnesium, which blocks responses mediated by NMDA receptors, preferentially reduced but did not eliminate, the response to L-homocysteate. 2-Amino-7-phosphonoheptanoate, a potent NMDA antagonist, preferentially blocked L-homocysteate evoked responses. 6,7-Dinitroquinoxaline-2,3-dione, a potent kainate antagonist, preferentially blocked D-homocysteate-evoked responses. Therefore, in the rabbit retina, L-homocysteate is an NMDA-preferring agonist, whereas D-homocysteate is a kainate-preferring agonist. In addition, we found that L-homocysteate can activate the physiologically activated kainate receptor but only when used in millimolar concentrations and under conditions that minimize NMDA-receptor activation. However, the low potency of L-homocysteate combined with low affinity for the glutamate transporter, lack of immunocytochemical localization in bipolar cells, and low retinal content place serious limitations on the role of L-homocysteate at the bipolar-to-cholinergic amacrine cell synapse.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources