Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug;10(4):514-22.
doi: 10.1016/s0883-5403(05)80154-8.

Mechanical influences on tissue differentiation at bone-cement interfaces

Affiliations
Free article

Mechanical influences on tissue differentiation at bone-cement interfaces

N J Giori et al. J Arthroplasty. 1995 Aug.
Free article

Abstract

Retrieval studies have shown that tissue at the bone-cement or bone-implant interface can develop into fibrous tissue, fibrocartilage, and bone, and that tissue differentiation appears to be mechanically influenced. A prior histologic analysis of retrieved interface tissues supporting cemented Marmor unicondylar knee components found that beneath the central portion of these implants, a thick, mature layer of fibrocartilage consistently developed, whereas fibrous tissue formed beneath the prosthesis periphery and adjacent to the bone beneath the tibial spine. Finite-element analysis was used to model the interface tissue supporting a cemented Marmor tibial component and interpreted patterns of stress and strain generated in the interface according to a mechanically based tissue differentiation theory. Distortional strain and hydrostatic stress, mechanical stimuli that are hypothesized to be associated with fibrous matrix and cartilaginous matrix production, respectively, were found to correlate well with the previous histologic findings. Given the biologic environments in which the retrieved interface tissues developed, frequently applied hydrostatic stress of approximately 0.7 MPa may be sufficient to stimulate cartilaginous extracellular matrix production in the interface tissue, and frequently applied distortional strain of 10% may be sufficient to stimulate fibrous extracellular matrix production.

PubMed Disclaimer

Publication types

LinkOut - more resources