Nuclear phospholipase D in Madin-Darby canine kidney cells. Guanosine 5'-O-(thiotriphosphate)-stimulated activation is mediated by RhoA and is downstream of protein kinase C
- PMID: 8530380
- DOI: 10.1074/jbc.270.50.29843
Nuclear phospholipase D in Madin-Darby canine kidney cells. Guanosine 5'-O-(thiotriphosphate)-stimulated activation is mediated by RhoA and is downstream of protein kinase C
Abstract
We have recently demonstrated the existence of an ATP-activated phospholipase D (PLD) in the nuclei of MDCK-D1 cells (Balboa, M. A., Balsinde, J., Dennis, E. A., and Insel, P. A. (1995) J. Biol. Chem. 270, 11738-11740). We have now found that nuclear PLD is synergistically activated by guanosine 5'-O-(thiotriphosphate) (GTP gamma S) and ATP in a time- and concentration-dependent manner, but these compounds do not alter the sensitivity of the enzyme to activation by Ca2+. The synergistic stimulation of PLD activity could be blocked by addition of the protein kinase C inhibitors chelerythrine and calphostin C. Stimulation by GTP gamma S was abolished by guanosine 5'-O-(2-thiodiphosphate). Incubation of isolated nuclei with Clostridium botulinum C3 exoenzyme inhibited the potentiating effect of GTP gamma S on ATP-dependent nuclear PLD activity. Moreover, use of the Rho GDP dissociation inhibitor to extract Rho family G proteins from cell nuclei also inhibits PLD activity. Western blot analyses of isolated nuclei revealed the presence of the small G protein RhoA, but not of RhoB or the ADP-ribosylation factor. GTP gamma S-stimulated ATP-dependent PLD activity could be reconstituted in Rho GDP dissociation inhibitor-washed nuclei by addition of recombinant prenylated RhoA, but not by addition of non-prenylated RhoA. Taken together, these results indicate that nuclear PLD activity is modulated via a RhoA-dependent activation that occurs downstream of protein kinase C. Nuclear PLD, which appears to be a previously unrecognized effector regulated by protein kinase C and G proteins, may be involved in the regulation of nuclear function or structure.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
