Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Dec 15;270(50):29991-7.
doi: 10.1074/jbc.270.50.29991.

A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering

Affiliations
Free article
Comparative Study

A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering

V C Culotta et al. J Biol Chem. .
Free article

Abstract

The copper toxicity of yeast lacking the CUP1 metallothionein is suppressed by overexpression of the CRS4 gene. We now demonstrate that CRS4 is equivalent to SOD1, encoding copper/zinc superoxide dismutase (SOD). While overexpression of SOD1 enhanced copper resistance, a deletion of SOD1, but not SOD2 (encoding manganese SOD), conferred an increased sensitivity toward copper. This role of SOD1 in copper buffering appears unrelated to its superoxide scavenging activity, since the enzyme protected against copper toxicity in anaerobic as well as aerobic conditions. The distinct roles of SOD1 in copper and oxygen radical homeostasis could also be separated genetically: the pmr1, bsd2, and ATX1 genes that suppress oxygen toxicity in sod1 mutants failed to suppress the copper sensitivity of these cells. The Saccharomyces cerevisiae SOD1 gene is transcriptionally induced by copper and the ACE1 transactivator, and we demonstrate here that this induction of SOD1 promotes protection against copper toxicity but is not needed for the SOD1-protection against oxygen free radicals. Collectively, these findings indicate that copper/zinc SOD functions in the homeostasis of copper via mechanisms distinct from superoxide scavenging.

PubMed Disclaimer

Publication types

LinkOut - more resources