Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Jan;145(1):31-8.

Characterization of multilocus lesions in human cells exposed to X radiation and radon

Affiliations
  • PMID: 8532834
Comparative Study

Characterization of multilocus lesions in human cells exposed to X radiation and radon

M A Chaudhry et al. Radiat Res. 1996 Jan.

Abstract

Human TK6 lymphoblasts were exposed to X radiation or radon, and thymidine kinase negative (TK-/-) mutants were selected, isolated and harvested for analysis of structural changes in the TK gene. A large majority (82%) of the radon-induced mutants, 74% of the X-radiation-induced mutants and 45% of the spontaneous mutants lost the entire active TK allele. To analyze these mutants further we measured the loss of heterozygosity at several loci neighboring the TK locus on chromosome 17q. A greater proportion (61%) of the radon-induced mutants than X-radiation-induced or spontaneous mutants harbored the smaller lesions involving the TK allele alone or extending from the TK locus to one or both of the closest neighboring sequences tested. Further, 21% of the X-radiation-induced mutants but only 5% of the radon-induced mutants lost heterozygosity at the col1A1 locus, 31 Mb from the TK gene. These results are in agreement with a recent analysis of radon- and X-radiation-induced lesions inactivating the HPRT gene of TK6 cells, in which we reported that a lower percentage of radon- than X-radiation-induced mutants showed lesions extending to markers 800 kb or more from the HPRT gene on the X chromosome (Bao et al., Mutat. Res. 326, 1-13, 1995). In the present study, we observed that the percentage of slowly growing and very slowly growing TK-/- mutants was greater after treatment with radon than after treatment with X radiation, regardless of the type of lesion present. It is possible, therefore, that the radon-induced lesions are complex and/or less easily repaired, leading to slow growth in a large proportion of the surviving mutant cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources