Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec 1;234(2):521-6.
doi: 10.1111/j.1432-1033.1995.521_b.x.

Ligand specificity of pheromone-binding proteins of the processionary moth

Affiliations
Free article

Ligand specificity of pheromone-binding proteins of the processionary moth

J Feixas et al. Eur J Biochem. .
Free article

Abstract

Photoaffinity labeling of proteins extracted from sensory hairs and antennal branches of the processionary moth Thaumetopoea pityocampa with a tritium-labeled diazoacetate analogue of the sex pheromone (Z)-13-hexadecen-11-ynyl acetate revealed a 15-kDa pheromone-binding protein in male moth sensory hairs (SH-15). A different 15-kDa protein in male antennal branches (B-15) was not photolabeled. All extracts except male sensory hairs showed a photolabeled 20-kDa protein; a photolabeled male 30-kDa protein in the branches (B-30) was also observed. The 20-kDa proteins in the sensory hairs (SH-20) and branches (B-20) showed differing affinities for the photoaffinity analogues; moreover, SH-15 exhibits higher affinity for the natural pheromone, (Z)-13-hexadecen-11-ynyl acetate, than for its alcohol metabolite and other analogues in competitive displacement experiments. The affinity shown by the pheromone-binding protein for the metabolic product suggests that the alcohol may be also transported by the binding protein. Interestingly, a shift in labeling from SH-15 to SH-20 was produced in the presence of an excess of the natural pheromone, its alcohol and other analogues. The binding showed little discrimination among structurally similar analogues of the pheromone, while saturated and aromatic molecules showed little affinity for the proteins of either sensory hairs or antennal branches.

PubMed Disclaimer

Publication types

LinkOut - more resources